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Discrete-time Markov chains

Let Φ = {Φn, n ≥ 0} be a time-homogeneous discrete-time
Markov chain (DTMC), evolving on a complete separable
metric space E , whose Borel σ-algebra shall be dented by
B(E ).

The transition kernel is denoted by P = (P(x , dy) : x , y ∈ E ).
Suppose that P is Ψ-irreducible and Harris positive recurrent
with the unique stationary distribution π = (π(dx) : x ∈ E ).
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Poisson’s equation for DTMCs

Poisson’s equation has the following form:

(I − P)g̃ = g ,

where I is the identity operator, g(x) = g(x)− π(g).

The function g is called the forcing function and is assumed to
satisfy π(|g |) <∞. The function g̃ is called a solution of
Poisson’s equation.
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Uniqueness and existence

By Glynn & Meyn (1996), we know:

Uniqueness: If g̃1 and g̃2 are two solutions of Poisson’s
equation with π(|g̃1|+ |g̃2|) <∞, then g̃1(x) = c + g̃2(x) for
some c .

Existence: A commonly used solution is given by

g̃α(x) = Ex

[ τα−1∑
k=0

g(Φk)

]
, x ∈ E ,

where α is an atom in B(E ), and τα = inf{k ≥ 1 : Φk ∈ α}.
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Connection-CLT

Under some conditions, a central limit theorem (CLT) holds
(Meyn & Tweedie 2009), i.e.

n−
1
2

n∑
k=1

g(Φk)⇒ N(0, σ2(g)), as n→∞,

and the variance constant σ2(g) is given by

σ2(g) = 2Eπ[g̃(Φ0)g(Φ0)]− Eπ[g 2(Φ0)].
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Connection-Hoeffding’s inequality

. Hoeffding’s inequality (Glynn & Ormoneit 2002, Choi & Li
2019, L. & Liu 2020):

If Poisson’s equation admits a solution g̃ such that
‖g̃‖∞ <∞, then for any ε > 0 and n > 2‖g̃‖∞/ε,

Px

(
1
n

n∑
k=1

g(Φk)− π(g) ≥ ε

)
≤ exp

{
−(nε− 2‖g̃‖∞)2

2n‖~g‖2∞

}
.
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Connection-perturbation analysis

. Perturbation theory (Glynn & Meyn 1996, L. 2015):
Let P and P̃ be positive recurrent Markov chains with
invariant probability distributions π and ν respectively.

(ν − π)g = ν∆g̃ ,

where ∆ = P̃ − P is the perturbation.
. Truncation approximations to invariant distribution
(Masuyama 2016, L. & Li 2018):

((n)π − π)g =(n) π∆g̃ .
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Further connections of Poisson’s equation

. Markov decision theory: Poisson’s equation is known as the
dynamic programming equation, and the functions g and g̃
are called the cost function and the value function (Guo &
Hernández-Lerma 2009).

. MCMC algorithms: variance reduction problems (Mijatović
& Vogrinc 2019).

. Ergocity for single-birth process with specific g (Chen &
Zhang 2014).
......
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Concern problems

Solve the Poisson equation: QBD processes: Dendievel, L. &
Latouche(2013); Bini et al. (2016) (General solution); Liu L.
& Zhao (2023) (matrix-analytical method for countable
chains).

Derive bounds on the solution: Glynn & Meyn (1996); Wu
(2009).

Approximate the solution: Mijatović & Vogrinc (2019); Liu, L.
& Zhao (2022) (Augmented truncation).

. In this talk, we present bounds and monotonicity about a
solution of Poisson’s equation.
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Petite set

Recall that a set C ∈ B(E ) is called a petite set if there exists
a positive constant λ, probability distributions ϕ and
a = (a(n), n ∈ Z+) such that

∞∑
n=0

a(n)Pn(x , ·) ≥ λϕ(·), x ∈ C .

. C is called a νm-small set if a(n) = 1{n=m}.
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Lyapunov drift condition

Drift condition for f -ergodicity:

D(V,f,b,C): There exists a positive constant b <∞, a set C
and finite functions V ≥ 1 and f ≥ 1 such that

PV (x) ≤ V (x)− f (x) + b · 1C (x), x ∈ E ,

where 1C (·) is the indictor function in the set C .

. If f = βV for some 0 < β < 1, then it responds to
geometric ergodicity.

. If f = V α for some 0 < α < 1, then it responds to
polynomial ergodicity.
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Bounds on a solution

Theorem 1.(Glynn, Lin & L. 2023)

Suppose that D(V,f,b,C) holds for a petite set C . Then for
any measurable function g satisfying 0 ≤ g ≤ f , there exists a
solution g̃ such that

−b
infx∈E f (x)

(V (x) + bd) ≤ g̃(x) ≤ V (x) + bd , for x ∈ E ,

where d = 1
λ

∑∞
n=0 na(n).

Remark: 1) If C be an atom,then d = 1;

2) If C is a νm-small set, then d = m
νm(E)

.
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Comparison with Meyn & Glynn (1996)

Under the same condition, Meyn & Glynn (1996) established
the following upper bound

|g̃(x)| ≤ c[V (x) + 1]

for some implicit constant c . Our bound presents an explicit
representation of the constant c

|g̃(x)| ≤ max
{

b
infx∈E f (x)

, 1
}

[V (x) + bd ].
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Key ideas in proof

. Construct a split chain and obtain the solution of Poisson
equation

g̃(x) = Ex

[
τ−1∑
j=0

ḡ(Xj)

]
.

. Apply the comparison theorem and properties of the split
chain to bound g̃(x).
. A detailed analysis of the bounds on Ex

[∑τ−1
j=0 IC (Xj)

]
.
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Application: truncation approximation

Let V be a coercive function such that a sublevel set
An := {x : V (x) ≤ n} is either empty or compact. Let
N(C ) = min{n : C ⊆ An} for a set C .

Corollary 1 Suppose that there exists a petite set C such
that {(n)P , n ≥ N(C )} uniformly satisfies D(V,f,b,C). Then
we have∥∥π − (n)π

∥∥
f ≤ b[n + d(b + 1)]π(Ac

n) +

∫
y∈Ac

n

π(dy)V (y).

Moreover, if π(V ) <∞, then
∥∥π − (n)π

∥∥
f → 0 as n→∞.
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Application: asymptotic variance

Corollary 2 Suppose that D(V,f,b,C) holds for a petite set C
and that π(V 2) <∞. Then for any measurable function g
with 0 ≤ g ≤ f , we have

γ2
g := lim

n→∞

1
n

Eπ[(Sn(ḡ))2]

= 2Eπ[g̃(Φ0)g(Φ0)]− Eπ[g 2(Φ0)]

≤ 2Covπ(V (Φ0), g(Φ0))− Eπ[g 2(Φ0)].

If γ2
g > 0, then a CLT holds.
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Stochastically ordered Markov Chains

Let Φn be a DTMC on the state space E = R+ or E = Z+.
Let Φ1

n and Φ2
n be two copies of Φn with different initial states

and the same transition kernel.

The chain {Φk , k ≥ 0} is called stochastically ordered if Φ1
n is

stochastically larger than Φ2
n (P(Φ1

n ≤ z) ≤ P(Φ2
n ≤ z),

z ∈ E ) for any n ≥ 1, whenever Φ1
0 is stochastically larger

than Φ2
0.
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Monotonicity for a solution

Suppose that the state 0 is accessible, then

g̃0(x) = Ex

[ τ0−1∑
k=0

g(Φk)

]
, x ∈ E ,

is a solution of Poisson’s equation.

Theorem 2 (Liu & L. 2023)

Let Φn be a Harris positive recurrent and stochastically
ordered Markov chain with invariant distribution π. If the state
0 is accessible from any other state, g(x) is non-decreasing in
x and π(|g |) <∞, then g̃0(x) is also non-decreasing.
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Key ideas in proof

. Stochastic ordering is distributionally equivalent to pathwise
ordering in the sense that

Φ1
n(ω1) ≥ Φ2

n(ω2) if Φ1
0(ω1) ≥ Φ2

0(ω2).

. Note g(x) = g(x)− π(g) is non-decreasing in x .

. For x ≥ y

g̃0(x) = Ex

[ τ1
0−1∑
k=0

g(Φ1
k)

]
≥ Ey

[ τ2
0−1∑
k=0

g(Φ2
k)

]
= g̃0(y).
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Comparison

Comparison with Glynn & Infanger (2022):

(1) For E = Z+, both results are the same. For E = R+, the
results differ in the assumptions.

(2) Different arguments.
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Block-Structured Markov Chains

Let {(Xk ,Yk), k ≥ 0} be a block-structured two-dimensional
Markov chain with a countable state space E =

⋃∞
i=0 `(i),

where
`(i) := {(i , j), i ≥ 0, 1 ≤ j ≤ d}

denotes the level set. These chains are useful for modelling the
phase-type queues. (Neuts 1988, Latouche and Ramaswami
1998.)

Let P = (P(k , i ; l , j))(k,i),(l ,j)∈E be the transition probability
matrix of the chain {(Xk ,Yk), k ≥ 0}.
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Block-Monotone Markov chains (BMMC)

A stochastic matrix P is called stochastically block-monotone
with block size d ≥ 1 if for all k , ` ≥ 0,

∞∑
m=`

P(k , i ; m, j) ≤
∞∑

m=`

P(k + 1, i ; m, j), 1 ≤ i , j ≤ d .

A function g = g(i , j)(i ,j)∈E is called block non-decreasing
with block size d if for all i ≥ 1, 1 ≤ j ≤ d , we have
g(i , j) ≤ g(i + 1, j).
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For a fixed state (α′, α′′) ∈ E ,

g̃(α′,α′′)(k , i) = E(k,i)

[ τ(α′,α′′)−1∑
k=0

g(Xk ,Yk)

]
, (k , i) ∈ E ,

is one solution of Poisson’s equation.

Theorem 3 (Liu & L. 2023)

Suppose that {(Xk ,Yk), k ≥ 0} is an irreducible and positive
recurrent BMMC. If the forcing function g is block
non-decreasing with size d and satisfies π(|g |) <∞, then for
any state (α′, α′′) ∈ E , the solution g̃ (α′,α′′) is also block
non-decreasing with size d .
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Key ideas of proof

. Our arguments are based on the sample path analysis. We
first consider the case of (α′, α′′) = (0, 1).

. Masuyama (2015) shows that a block-monotone Markov
Chain, is pathwise ordered in the first variable Xk given the
same second phase variable.

. For the general case of (α′, α′′), we know that

g̃ (α′,α′′) − g̃ (0,0) = g̃(α′,α′′)(0, 1)e.
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An illustrative example

We consider a quasi-birth-and-death (QBD) process with
transition matrix P given by

P =


A−1 + A0 A1 0 0 · · ·

A−1 A0 A1 0 · · ·
0 A−1 A0 A1 · · ·
0 0 A−1 A0 · · ·
...

...
...

... . . .

 .

Obviously P is block-monotone.
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Here, we let

A−1 =

 0.3 0.2 0.1
0.2 0 0.3
0.3 0 0.2

 , A0 =

 0.1 0.1 0
0 0.2 0.1
0.2 0.1 0

 ,

and

A1 =

 0.1 0 0.1
0.1 0.1 0
0 0.1 0.1

 .

Now, take g(i , j) = i + 1
j+1 , i ≥ 0, j ∈ {1, 2, 3}. Based on Liu,

L. & Zhao (2023), we obtain π(|g |) ≈ 1.2658 <∞ and the
solution g̃ (0,1).
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Figure: The values of the solution g̃ (0,1)
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Non-recurrent BMMCs

For a non-recurrent BMMC and a finite non-negative function
g , Poisson’s equation is written as

(I − P)g̃ = g .

The function g̃∞, defined by

g̃∞(k , i) = E(k,i)

[ ∞∑
k=0

g(Xk ,Yk)

]
, (k , i) ∈ E ,

is the minimal non-negative solution of Poisson’s equation.
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Block monotonicity

Theorem 4 (Liu & L. 2023)

Let {(Xk ,Yk), k ≥ 0} be an irreducible and non-recurrent
BMMC. If the forcing function g is block non-increasing with
size d , then the solution g̃∞ is also block non-increasing with
size d .

Remark 2. In fact, if the forcing function g is block
non-decreasing, the solution g̃∞ is also block non-decreasing.
However, in this case, the solution function g̃∞ =∞.
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Concluding remarks

(1) The results for bound and monotonicity of the Poisson
equation can be expected to hold for continuous-time Markov
processes.

(2) It is interesting to extend the concept of
block-monotonicity to Markov switching fluid queue/
Brownian motion
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Thank you for your attention!
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